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A numerical study is made of the scaling behavior associated with M-furcations 
( M = 3 ,  4, 5) in the map  xt+t = 1 - / ~  Ix,I -~ ( z>  1). The scaling constants 6 and 
are calculated as functions of z, as well as the more general scaling functions a 

and f (a) .  
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1. I N T R O D U C T I O N  

The one-dimensional iterative map 

Xt+l= f ( x t )=- l - -# l x , I  z, z > l  (1) 

which maps the interval x e [ - 1 ,  1] into itself, displays a very rich 
dynamical behavior/1'2) This map is generic for all single-hump one-dimen- 
sional maps which have (locally around the maximum) a leading non-, 
linearity of order z. The z = 2  case is by far the most common in 
experiments, (3) but other values of z are also found. (4) 

When the parameter # in Eq. (1) is raised (starting from # = 0 )  the 
attractors (or long-time solutions) of the map show a sequence of periodic 
orbits with period 2 k (k -- 0, 1, 2...). The kth period appears at #k through a 
pitchfork bifurcation of the ( k - 1 ) t h  period, and the sequence {#k} 
accumulates (k--, oe) at ~ ( z ) ,  where the system enters 'into chaos. In the 
chaotic region aperiodic attractors are present as well as an infinite number 
of periodic windows, which always appear in the same order, indepen- 
dently of z. When these windows are taken in an appropriate order, they 
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form sequences of M-furcations, with period M k ( M >  2), which generalize 
the bifurcations (M = 2). The windows of the M-furcations are not adjacent 
on the parameter axis and they are very narrow. However, the period- 
tripling sequence (M = 3) has been observed experimentally.(5) Above/~ = 2 
no finite attractors exist and x, is driven to infinity. 

All the sequences of M-furcations present scaling factors that converge 
and define universality classes determined by z, in the sense that the factors 
do not change if higher-order terms are included in Eq. (1). In the/2 direc- 
tion there is the scaling factor 3 and in the x direction there is a whole set 
of scaling factors (the principal ones being e and c~ z) which together form 
the scaling function a. The existence of a set of scaling indices in the 
attractor at the accumulation point of the M-furcation characterizes the 
presence of a multifractal, which can be studied through the function f (a) .  

Van der Weele et al. 16) studied 3, ~, a, and f (a )  as function ofz  for the 
bifurcations ( M = 2 ) ,  and Shau-Jin Chang etal.  (7~ calculated a, 6, and 
fractal dimensions for the z = 2 case and M~< 7. References 8-14 also deal 
with scaling factors for the M-furcations in the map (1). 

The aim of the present communication is to study numerically, as 
function of z, the scaling factors ~ and 6, and the scaling functions a and 
f ( a )  for M =  3, 4, and 5, which correspond, respectively, to trifurcations, 
tetrafurcations, and pentafurcations. The paper is organized as follows: in 
the next section I calculate the scaling function 3; Sections II and III study 
the functions a and f (a ) ,  respectively; the last section is dedicated to the 
conclusions. 

2. T H E  S C A L I N G  F A C T O R  6 

In this section let us initially fix upon notations before introducing the 
method used in the numerical calculations. For every periodic orbit in the 
map (1) there is one value of the control parameter for which the orbit 
includes the critical point (peak) of the map. At this value of the parameter 
the cycle is called superstable. Following the images of the peak at the 
superstable cycle it is possible to form a word of R and L according to 
whether the subsequent iterations in the orbit are on the right or on the left 
of the peak. This word is called the U-sequence of the cycle. (15~ In the case 
of the trifurcations and tetrafurcations the basic 3-cycle and 4-cycle have 
U-sequences RL and R L L  (or RL2). The pentafurcations have three types 
of sequences for the basic 5-cycle, namely RLR 2, RL2R, and RL 3. The 
U-sequences related to the higher-order periods in the M-furcations are 
constructed following the rules described in refs. 1 and 15. 

For each family of cycles related to a sequence of M-furcations the set 
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{/~k} where superstable cycles occur converges geometrically at a rate 
given by 

= lim fik - ilk- 1 = const (2) 

and it accumulates at 5oo- 
To determine the set {ilk} where the cycles belonging to a family of 

M-furcations are superstable, we use the method introduced by Hao 
Bai-Lin. (16) Let us explain the method with the same type of U-sequence 
chosen by him, namely RLRR. At the superstable cycle the iterations of the 
map proceed from x = 0 to x = 0, i.e., 

f~(fR(fL(fR(f(I.t, 0))))) ----- 0 (3) 

where the subscript R or L indicates which branch, right or left, of the map 
has been used at each iteration. Since the inverse mapping is two valued, 
define 

R(x) = fR l (g ,  X)= +[ (1  --X)/t.t] 1/z (4a) 

L(x) = f {  1(p, x) = - [( 1 - x)/I.t] 1/z (4b) 

depending on which half of the mapping is used. If successive inverses of 
Eq. (3) are taken, one obtains for the word RLRR the functional relation 

R(L(R(R(O)))) = 1 (5) 

which is an equation for #. Multiplying Eq. (5) by f l -  1/# yields 

fi[~(1 + Eft(1 - Eft(1 -flvz)]'/z)]Vz)]l/z= fi (6) 

This equation can be solved by iterations, as suggested by Kaplan, (iv) i.e., 
replacing it by 

fl,,+l = fl,,[fl,,(1 + Eft,,(1 - [fi.(1 --flln/Z)]l/z)]l/z)']l/z (7) 

and then iterating the equation for a suitable rio. 
This method is quite simple and can be used for any type of map 

whose inverse is calculable in a closed form and for any type of 
U-sequence. However, the convergence of Eq. (7) becomes slower in the 
z -~ 1 and z --* oo limits. 

Table I displays the values of the accumulation points fioo of the 
superstable values and of 6 for z = 1.5, 2, 3, 4, 6, 8, and 10 and for five 
types of sequences, namely (RL) *n, (RL2) *n, (RLR2) *n, (RL2R) *", and 
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Table I. Accumulation Points I ~  and M-Furcat ion Rates 6 and o for Typical 
Values of z and for the Sequences (RL)*",  (RLZ) *", (RLR2) *", (RLZR)*% and 

(RL3) *"a 

z (RL) *~ (RL2) *~ (RLR2) *~ (RL2R) *~ (RL3) *" 

1.5 / ~  1.713540707 1.908140938 1.581073957 1.810146096 1.970391709 
6 7.311 x 101 2.719 x 103 6.442 x 102 4.984 • 103 8.691 • 10 4 

3.010 • 101 3.234 • 102 1.292 • 10 ~ 5.143 x 102 3.174 • 103 

2 /io~ 1.786440255 1.942704354 1.631926654 1.862224022 1.985539530 
6 5.524 x 10 l 9.816 x 102 2.555 x 102 t.287 • 10 3 1.693 • 10 4 

ct 9.277 3.882 x 101 2.013 x 101 4.580 x 101 1.600 x 102 

3 /2~ 1.867865948 1.973456485 1.700204726 1.918298028 1.995250019 
6 6.681 x 101 9.665 x 102 2.404 x 102 1.106 x 103 1.486 x 104 
ct 4.364 1.063 x 101 6.720 1.125 • 101 2.645 • 10 ~ 

4 /7~ 1.909335470 1.985504660 1.743351015 1.945858583 1.997974021 
6 8.578 x 101 1.275 • 10 3 2.919 • 10 2 1.418 x 103 2.099 • 10 4 

ct 3.152 6.193 4.294 6.398 1.248 • 10 z 

6 / ~  1.948866269 1.994205417 1.795920044 1.970972615 1.999432441 
1.301 • 10 ~ 2.22 x 10 3 4.317 x 102 2.433 • 103 4.32 • 104 

~t 2.281 3.659 2.790 3.727 6.007 

8 /i~ 1.966776434 1.997084404 1.827674871 1.981779236 1.999779411 
6 1.789 • 102 3.49 • 103 5.89 • 102 3.79 x 103 7.87 x 104 

1.925 2.791 2.237 2.826 4.122 

10 /i~ 1.976500608 1.998317004 1.849408804 1.987431027 1.999896134 
6 2.296 x 102 5.05 x 103 7.53 • 102 5.42 x 103 1.28 • l0 s 
ct 1.729 2.355 1.949 2.375 3.26 

The results for z = 2, 4, 6, and 8 are also calculated in ref. 10, but the present numerical 
values are more accurate. 

( R L 3 )  *" (see ref. 1 for  th i s  n o t a t i o n ) ,  w h i c h  c o r r e s p o n d  to  M =  3, 4, a n d  5. 

T h e  n u m e r i c a l  va lues  of  6 as  a f u n c t i o n  of  z a r e  p l o t t e d  in  Fig. 1. N o t e  t h a t  

6 s eems  to  d ive rge  in the  l im i t  z --* 1 for  al l  cases  c o n s i d e r e d  a n d  p r e s e n t s  a 

m i n i m u m  n e a r  z = 2. F o r  t h e  b i f u r c a t i o n s  ( M =  2), 6(z) is a m o n o t o n i c a l l y  

i n c r e a s i n g  f u n c t i o n  o f  z a n d  6 ( 1 ) = 2 .  (1) T h e r e  is a c o n t r o v e r s y  a b o u t  the  

b e h a v i o r  o f  l i m z ~  ~ 6(z) .  E c k m a n n  a n d  W i t t w e r  (11) a n d  v a n  d e r  W e e l e  

et a/. (6'8) a f f i rm t h a t  l i m  z ~  6(t)< 30, w h e r e a s  B h a t t a c h a r g e e  a n d  

B a n e r j e e  (13) c l a i m  t h a t  6(z) d ive rges  i n  the  z ~ oo l imi t  ( t he  l a t t e r  r e su l t  

c o i n c i d e s  w i t h  the  o n e  s u g g e s t e d  v ia  t he  r e n o r m a l i z a t i o n  group(12)).  F o r  

M > 2  I d o  n o t  k n o w  a n y  c o n j e c t u r e  a b o u t  the  b e h a v i o r  of  6(z) in  t h e  

z -~ o0 l imit .  N u m e r i c a l  c a l c u l a t i o n s  in  th i s  l imi t  a r e  ve ry  difficult ,  s ince  t he  

c o n v e r g e n c e  o f  6 b e c o m e s  ve ry  slow. 
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Fig. 1. Log plot of the scaling factor 6 for the U-sequences with M = 3, 4, and 5. 

3. T H E  F U N C T I O N  o 

In the x direction there is a whole set of  scaling indices associated with 
the at tractors  at the accumulat ion point  of the M-furcations;  this fact 
characterizes the presence of a multifractal. The principal indices are a and 
~z, which are related to central (near x = O) and top (near x =  1) distances 
of the M-furcat ion tree, respectively. To  determine the function a, consider 
the superstable Mk-cycle {Xo, x~ ..... X M ~ t }  with xo=O.  The distances 
between Xm and x,~.  Mk- t (0 < m ~< M k - 1) are given by 

d k ,  m : ] X m  + M k - I  - -  X m [  

(8) 
= f ( , ~ + M ~  l ) (OI__ f (m) (O) l  

J f ik  \ / J ~k  ~ " J 

For  m > M k -  1 consider d k , n M k - l +  p = dg, p with n, p = 1, 2,.... Therefore the 
scaling function a can be defined by 

a ( t ) =  lim dk  q q ' t - - -  - -  ( 9 )  
k ~ oo dk  + l, q' m k+l 

where q = 1, 2 ..... M k. 



1320 de Sousa Vieira 

The scaling factors ~ and : (  are associated with the greatest  and 
smallest values of or, respectively, and are given by the relations 
(r(1/M) = 1/c~ and a(0 + ) = 1/e z. Table I shows the values of e for M =  3, 4, 
and 5 and z =  1.5, 2, 3, 4, 6, 8, and 10. Observe  that  the qualitative 
behavior  of e(z) is the same for all sequences with M = 2, 3, 4, and 5, i.e., it 
is a monotonica l ly  decreasing function of z and seems to diverge when 
z ~ 1 (see ref. 6 for the M = 2  case). The scaling cd is shown in Fig. 2. 
Observe  that  6 and a z share the same qualitative behavior;  both  of them 
have a min imum near  z = 2, seem to diverge for z--* 1, and in the limit 
z ~ oe the relation 6 < c~ z is satisfied (this relation was observed for M = 2 
in ref. 8). Therefore,  the question of whether  6 has a limiting value when 
z-- ,  ve is t ransformed into a similar quest ion for cal. 

The function (7 calculated for larger values of q does not  give 
any further information,  since dk + 1,q + ~k = dk + ~,q and therefore 
~r(t + 1 / M ) =  a( t ) .  Figure 3 shows a( t )  for z = 1.5, 2, and 10 for the trifur- 
cations ( M = 3 ) .  In every rat ional  value of t ( 0 <  t <  1 / M )  there exists a 
j u m p  in the function g, but we observe that  the discontinuities decrease 
rapidly as the binary expansion of the rat ional  increases. In a crude 

Fig. 2. 
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Log plot  of the scal ing factor c~ ~ as a function of z for the U-sequences  with M = 3, 4, 
and  5. 
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Fig. 3. Log plot of the scaling function cr for z = 1.5, 2, and 10 for the sequence (RL)*". 

approximation there are M plateaus, which are divided into subplateaus. 
The discontinuities of the subplateaus become more and more pronounced 
when z increases, and they can be calculated using approximate methods 
(see ref. 6 for the M = 2 case). 

4. THE FUNCTION f(a) 

The scaling function f(a) is another way to characterize the multi- 
fractal set associated with the x direction. It is more convenient than the 
function a, from both theoretical and experimental points of view, since it 
is a smooth function. 
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Fig. 4. The func t ionf (a )  for z =  1.5, 2, 4, and 10 for the sequences (a) (RL2) *" and 
(b) (RL3) *'. 
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The formalism introduced by Halsey et aL (18) consists in covering the 
attractor with boxes, indexed by i, of size li, and assumes that the 
probability density scales like Pi oc l~' in the limit li ~ 0. The next step is to 
form the normalized partition function 

r(q, ~)=Y P /=  1 (10) 

The function :(q) determines the function f(a) through a Legendre trans- 
formation. 

To study the multifractal set present at the attractor of the M- 
furcations, I have chosen Pi = P = 1/Mk- 1 for the Mk-cycle. Therefore the 
partition function becomes 

rk = Y, dk-:~ (11 ) 
m = l  

where dk, m is given by Eq. (8). The functionfg(a) obtained by Eq. (11) con- 
verges, for k large enough, to the universal function f(a). The minimal and 
maximal values of a, which respectively characterize the most concentrated 

0.6 

0.4 

0.2 

m ~ I I 7=_  
3 ~5 7 9 

Fig. 5. Hausdorff dimension for the U-sequences with M =  3, 4, and 5. 
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and most rarefied regions of the attractor, are given by ami n = in M/ln ~ 
and amax = In M/ln ~. Consequently ama x = Zami n for all kinds of sequences; 
this is a useful relation, as it determines the exponent z associated with the 
maximum of the map in physical experiments. 

Figure 4 shows the function f(a) for z = 1.5, 2, 4, and 10 and for the 
sequences (RL2) *n and (RL~) *n. In the limit z ~ 1 the cu rve f ( a )  reduces to 
a sharp peak at a = 0, since amin = area• = 0, and the Hausdorff dimension 
Do [which coincides with the maximum of f(c~)] goes to zero. For  
increasing z, Do increases monotonically and converges to 1 in the limit 
z ~ oe (see Fig. 5). The behaviors of amin and am,~ for increasing z are 
directly related to the behaviors of c~ z and c~, respectively. Therefore a ~ ,  
first grows until it reaches a maximum near z = 2  and then decreases, 
whereas a~,~ is a monotonically increasing function of z and goes to 
infinity in the limit z ~ oe. 

5. C O N C L U S I O N S  

I have studied numerically the scaling factors associated with the M- 
furcations ( M =  3, 4, and 5) for single-hump one-dimensional maps given 
by x '  = 1 - # ixJ z. The numerical data were obtained by observing the level- 
by-level convergence of the scalings in the M-furcation tree. When z is 
varied, the factors c5 and c~ z have similar qualitative behavious for M = 3, 4, 
and 5, i.e., they diverge for z --* 1 and have a minimum near z = 2. In the 
limit z--* ov I verified that 6 < ez, but whether these scalings diverge in this 
limit is a question to be worked out. The scaling ~ is a monotonically 
decreasing function of z for all sequences studied. I have also calculated the 
functions a and f(a) related to the multifractal set present at the 
accumulation points of the M-furcations. 
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